Yet More Restoration of Faded Slides

Geoff Daniell
gjd@lionhouse.plus.com

June 7, 2019

1 Background

For several years I have worked on algorithms for the automatic improve-
ment of colour slides or prints that have deteriorated with age. Originally
the code was implemented as a plug-in for the gimp image processing pack-
age. Later I produced stand-alone code in python that was independent
of the gimp environment. This used the PIL image processing library in
python. I have recently discovered that the code called pyrestore2.py no
longer works correctly and this is due to changes in the PIL library, in par-
ticular the colour quantising procedure Image.quantize(). The similiar
program pyrestore3.py uses my own colour quantisation algorithm and is
unaffected.

It was also possible, with experience, to recognise pictures that had been
through the restoration process, which proves that the result must be dif-
ferent to the original and there is room for a better method.

The previous document ‘Restoration of Faded Slides’ discusses the process
of colour photography and possible models for the deterioration. The con-
clusion there was that it should be possible to reverse the deterioration using
just the gimp ‘levels’ command if the parameters are suitably chosen and
ways of determining these values were suggested. I feel that this discussion is
still valid but more robust ways of fixing the parameters are needed. These
are the subject of this document.

2 Colour Quantisation

Colour quantisation was originally conceived as an method of image com-
pression in which the three bytes used for colour information was replaced by
one, although this is no longer particularly important because of increases in
disk space and machine speed. Its relevance to my work follows from a con-
sideration of the processes by which a photograph could deteriorate which
are discussed in detail in a previous document (Restorel.pdf). A change
in the coloured dyes in the emulsion affects all the colours in an image in
ways that can be calculated and the range of colours present can be used

to deduce that the photograph has probably deteriorated. If almost all the
colours are blueish it is likely that this results from a chemical change in
the emulsion. It is always possible that the original scene had an unusual
range of colours and there is no way to prove this. On the other hand even a
few pixels not showing a blue tinge proves that the colours are genuine and
not the result of deterioration. The important point is that it is the range
of colours present in the image that is important and not how many pixels
share a particular colour. This is the reason why my previous algorithms
used colour quantisation as a first step.

After investigating several published methods for colour quantisation in
python it has become clear that it was a mistake to rely on this step. There
are several algorithms for determining the ‘best’ set of N colours to represent
an image but ‘best’ is usually not defined beforehand and the output from
the code is simply result of applying a particular method. It is known that
in some cases the results depend on the initial guess for the best colours.
The list of colours is often in arbitrary order and even when sorted the ‘best’
set of colours can vary a lot when produced by different algorithms.

3 A Fresh Start

Most image processing packages include procedures for image enhancement,
for example by stretching the contrast range or adjusting the maximum
and minimum values in each colour channel. These effectively define a ‘tar-
get image’ which is assumed to be better than the original. All my earlier
restoration attempts (Restorel.py, Restore[2,3].py and the related gimp plu-
gins) use the optimum set of colours to determine how to move the image
towards a ‘target image’ defined in some way.

In earlier work plots of the red, green and blue intensities in the optimum
colours against index number were used. It was essentially an empirical
discovery that these plots could be used to estimate the deterioration that
had occured in each colour. In my first method the low and high intensites
only were used to estimate the restoration parameters. In the second algo-
rithm the whole curve was used and this is obviously better than relying
on just two points on the curve. As a result of the fresh start proposed
here an attempt was made to give a theoretical justification for the use of
such plots. By analysing simple models and from numerical experiments I
have concluded that, in spite of the fact that it works well, there is very
little theoretical support for this approach. In particular it does not treat
the three colour channels equally because they are not equally represented
in the ‘lightness’ of the colour. However we will see below that some ideas
used in the former approaches are useful and form the basis of the latest
method.

The conclusions from the above discussion of colour quantisation are:

e The range of colours present in an image is still the only evidence for
deterioration and must be used in restoration.

e The colour quantisation methods are unreliable and an alternative is
needed.

e Because the results of quantisation cannot be used a new definition is
required for the ‘target image’ which is hopefully closer to the original
before deterioration.

3.1 A replacement for quantisation

One reason for using the PIL library (or the gimp indexed mode) is that
the calculation is fast because the library is written in C code and not
interpreted python. This need not be a problem as the Restore3 plugin
and the pyrestore3.py program use my own quantisation code in python.
However we now wish to steer clear of colour quantisation. The first idea to
gain speed is to do the analysis on a small copy of the image and this has
been used in all the previous approaches.

The simplest solution is to merely list all the separate colours present in
the small image but this can be a lot of colours and subsequent calculations
will be slow. It is however the range of colours that is important and not
fine gradations of colour. We can therefore approximate each colour before
making the list and this is easily done by using only the more significant bits
of the eight bits of the intensty in each colour channel. Using the four most
significant bits results in 4096 different colours and tests show that this list
can be handled at an acceptable speed. Using five bit rather than four will
produce 32768 colours and the subsequent processing will take eight times
as long. It is worth stressing that speed is not important in processing old
photographs; if ten seconds processing produces a better result than one
second then let it take ten seconds, the calculation will only be done once.

3.2 A New ‘Target Image’

In the resoration process we use the mathematical inverse of the presumed
degradation process to move the image closer to a target image. We previ-
ously defined an ‘ideal image’ using the distribution of best fitting colours
but for the reasons explained we now reject this definition. Let us list the
features of what might ordinarily be called a ‘good’ photograph:

1. Tt should contain pixels with a wide range of colours. (Note that the
number of pixels of any colour is not important.)

2. There should be a wide range of intensities from dark to light.

3. Things that should be white are indeed white; this is normally achieved
automatically in digital cameras by the ‘white balance’ setting.

4. The colours should be reasonably saturated and not look ‘washed out’.

Note that this excludes, sunsets, underwater shots, pictures exclusively of
foliage and ‘arty’ shots. No automatic process is going to make a good job
of restoring faded versions of these.

In my earlier restoration algorithms the distribution of best-fitting colours
was used to achieve the first two of these properties. The third was imple-
mented as a second pass through the restoration code and the saturation
was optionally increased using operations in the PIL library. As an aside,
this last step was a problem in the android version of the code because the
PIL library for android was not available. As a result the calculation was
very slow.

The ‘white balance’ step in earlier code is described in detail in the document
Restore2.pdf and was done using the (L*, U*, V*) colour space which is
a set of three numbers derived from the (R, G, B) values by non-linear
transformations. L* is designed so that it represents ‘lightness’ and U* and
V* contain colour information. The important point is that the (L*, U*, V*)
colour space has an approximate metric, that is the space can be divided
into cells of equal size which correspond to differences of lightness and colour
that are just distinguishable to the human eye. As this space proved useful
for the colour balance phase of the earlier restoration is seems a good idea
to use it for the definition of the target image and to combine it with the
concept of the ‘ideal image’.

Figure 1 shows a faded slide, it is the same as the one used previously.

= O

i e ®

Figure 1: left: An old slide, right: The colours in the image

On the right the approximately 200 separate (R, G, B) colours in the image
have been converted to (L*, U*, V*) values and their U* and V* values
are plotted as small squares which for convenience are coloured with the
actual colours. The L* coordinate is perpendicular to the page but some
information about the ‘lightness’ is deducible from the colours. Later we

will examine the distributions along this third axis. The positions in (U*,
V*) space of the primary colours are also shown.

It is clear that red colours predominate and all have U* > 0. On the other
hand the values of V* are both positive and negative. It is also clear that
the darkest and lightest colours are near the origin.

The ‘ideal image’ was previously defined using the plots of the three (R, G,
B) colour intensities in the quantised set of colours against index number.
Since the quantised colours are sorted according to their ‘lightness’ (either
built into the software or by explicitly sorting the result) we could have
looked at plots of the red, green and blue intensities against lightness instead
of against index number. The curves are very similar except at the extreme
low and high values of lightness. Now we can escape from the limitations of
colour quantisation and simply plot the red, green and blue values against
some measure of the ‘lightness’. This leads naturally to the idea of plotting
the values of U* and V* against L* for all the colours in the image. Figure
2 shows the approximately 200 separate colours with the values of U* (in
red) and V* (in blue) plotted against L*.

100 =

+ + o+t + +
i+ 4
+ P o4 e
50 — + E o+ T
+ + + FeoH w7
++ +# 44 + o,
+ +
+ + A T +
ot F H o+ + + +#Hoo+ P a
R #H o+t 4 + B S
+ + + Ty + i + + + +
4 + +oay v TR + ot + Iy ++ F
+ o + * togt o, ™ b
+ ++ + +H4 PR A +
&+ Ry + + o+ + ++ tite oA F + + *
5 T e+ [T R o+
+owt oA N S S *
+ oy oLt N PR ##L++ #++¢ £ 4+
ERE S Y PRIV SNV LE +
o N T AL R ML P T T
*o20 + ty 0 4T 4w teo + 80 100
- T+ .
+t B

50 —f

-100 —

Figure 2: The colours U* (red) and V* (blue) plotted against L*

Again the fact that all colours have U* > 0 is clear but the darkest and
lightest colours (at the ends of the L* axis) have smaller values of U*. The
values of V* also show some systematic variations. In the previous work
the restoration was designed to move the image as close as possible to an
‘ideal image’ which was defined by the plots of red, green and blue intensities

against approximate lightness. The ‘ideal image’ had the same curves for
the three colours and a prescribed functional form. Now we can apply the
same idea to U* and V*. The ‘ideal’ variation of U* and V* with L* is
there should be no systematic variation: the ‘ideal’ image has U* and V*
scattered about zero at each value of L*.

The observed variation of U* with L* has a large positive offset and a roughly
parabolic form; the variation of V* is more complicated and contains a
linear component as well. Because of the approximate metric property of
LUV space it is meangingful to define an average lightness denoted by L*,
taken over all the colours occuring in the image. We choose the restoration
parameters to remove the constant, linear and parabolic variations in the
plots.

3.3 The New Algorithm

My original discussion of the process of deterioration showed that if C' is
the intensity in one of the (R, G, B) channels in the faded image then the
corresponding value in the original can be calculated as

C A
!/ — 2
C 550 (—255>

where o and A are parameters describing the deterioration of each colour
channel. These six numbers are found by a systematic search to minimise
some property of the restored image. In the current method we choose them
to get the plots of U* and V* against L* as flat as possible

The calculation is described below; readers who are familliar with the the-
ory of orthogonal functions will appreciate why the calculation is done in
this way. Some properties of Legendre polynomials are assumed without
explanation.

We start with the function U (L) where L covers the range 0 to 100 and this
function is assumed to include all the fine detail visible in the plots of U
against L. In the current software the average L is forced to equal 50 and
the symbol Ly is used for this number.

If we define U(z) = U((z + 1)Lo) then z lies in the range [—1,1]. U(z) can
now be expanded as a series of Legendre polynomials:

U(z) = up Po(2)
n
and the coefficients u,, are given by

2n+1 [T~
Uy = n;_ / U(z)P,(z) dz
-1

We can now construct a measure of the average deviation of U from zero as

+1 2
/1 [U(x)] dz

and substituting the series of Legendre polynomials this can be shown to

equal
+1) 2)
/1 [Zn:un Pu(@) de =Y o=

n

In the plots of U against L in figure 2 we have considered only constant,
linear and quadratic variations, so we can truncate the series at n = 2.
Including only terms up to quandratic the quantity to minimise is

2 2
UL FU

22
Ut g 5

although this formula can obviously be generalised.

The value of the above discussion is that it gives the relative importance of
the constant, linear and quadratic variations in U. We now need to consider
how to calculate the coefficients u,,. The formula above for u,, can be written

n +1 - 2Lo
w = 25 [UL P = 2 [0 Pu(E-Lo) /Lo

The integrals can now be approximated by sums over all the individual
values of L; and U; that occur.

i (27;;0 1) (2—@ S0 (s Lo/ B0

N is the number of pairs of values L; and U;.

The first three Legendre polynomials are Py(z) = 1, Pi(xz) = x and Py(z) =
$(32% — 1) giving the results

where L, = (L; — Lo)/Lo.

There is one slight complication; the minimum can be achieved by making
the image black so all values of L* are zero. This is overcome by adding
(L—Lg)? as another term in the quantity to be minimised. This ensures that
the average lightness is fixed close to Lg. The issue of the overall lightness
of the restored image is discussed below, for the moment assume Ly = 50
and its purpose is to stop the silly all-black restoration.

In visual terms this means that there should not be an overall preference
for any colour at any intensity from dark to light. This is a very similar
objective to the white balance used before, the difference however is that
all colours are involved whereas the white balance considered pixels that
were almost white. The plots of U* and V* after restoration, but before any
further processing are shown here:

The symmetric distribution of U* and V* about zero, at all values of light-
ness L* is clear.

100 =

50 —

5
L + ¢+ + $ t £+
i t ot + : +
o +
ISR s S S S .
T t? s +++*’F tr# Tt ﬁ+ * ++++¢ i
+ % 4 T+ iﬂ +*+ £ T |+$+ +¢+; - é& %i;» j{- ﬁrt £ |;;++J'++ T, T
1, F, 4 i + + ++ + +
+F et = x + ++ i
0 e ey &+ oo ey LTEE RITE L 100
+ + + AT L *¢++H++j:
+ + +
++ ++++ + ¥ N * tr+ . i + ++ +
+ + o+
+ +
oo 4 oLt

50 —f

-100 —

Figure 3: The colours U* (red) and V* (blue) plotted against L*

4 White Balance, Scaling the Lightness and Satu-
ration

The main restoration is done by determining the six parameters A and o
for each colour channel. The computations are done on the small version
of the image for speed. The list of colours in this restored image is then
re-calculated since the restoration will not have been perfect. Previous algo-
rithms followed the main restoration by further adjustments; in this section
we discuss what additional adjustments might be appropriate in the new
approach. The calculations are done using the new list of colours.

Pre-processing

It turns out that the iterative search for the restoration parameters some-
times fails to converge. This happens for slides that have gone very dark
and the problem can usually be overcome by preliminary adjustment of the
brightness and contrast. It seems worthwhile including a test for this and
an automatic scaling which will work in most cases. The degree of scaling
does affect the result, but not a lot.

White Balance
In the earlier algorithms working on the (R, G, B) values the simple restorati-

ion produced good results but an slight overall colour cast frequently re-
mained which was removed by a second stage which improved the ‘white
balance’ in a manner used in digital cameras. This used the U* and V*
colour coordinates. Now that the main restoration is done in this colour
space a separate correction to the white balnce is unecessary. It turns out
that the definition of the ‘white point’ in the colour calculations is very crit-
ical and the values chosen have been determined empirically by looking at
a selection of results.

Lightness

Item 2 in the above list of desirable properties of a good image is a wide range
of intensities. In fact most image processing software includes a procedure
for stretching the range automatically. Early experiments showed that some
such operation was desirable and the Restore2.py and Restore3.py code in-
cluded a rather arbitrary rule for deciding the maximum overall intensity in
the image. In the new method a much simpler rule is possible: the light-
ness value L* is scaled so that the minimum and maximum values are moved
closer to 0 and 100. Since, as was explained above, the main restoration fixes
the mean lightness to be 50 it is a good idea to leave this value unchanged
so the light and dark parts of the lightness range are adjusted separately
with linear scalings. Because the lightness is so obviously a visible property
of the image the maximum and minimum values are computed using the
actual pixel values and not the separate colours.

Saturation

Item 4 in the list of desirable properties is to require reasonably saturated
colours. Several definitions of saturation are in use in colour science; the
one used previously in this work is defined by the HSV colour space where
the letters stand for ‘Hue’, Saturation’ and ‘Value’. Let h,m,l denote the
highest, middle and lowest values in the triplet of numbers 7, g, b describing
the colour of a pixel. The saturation S is now defined as (h —[)/h. This is
very simple but can result in rather unnatural colours.

A more refined definition can be constructed using L*, U*, V*. Since U* = 0,
V* = 0 corresponds to white or grey the saturation can be defined as how
far a point is from here relative to its lightness. The definition used is
S = (U*24+V*2)1/2/L*. The average of the values of S taken over the whole
(small) image is computed and U* and V* are scaled so as to raise this value
to a threshold value if it is lower.

Putting it all together
The steps in the code are as follows:

1. There is a check on maximum intensity and an overall scaling to correct
overly dark images.

2. The main restoration parameters are found using the list of colours in
a small copy of the faded image.

3. This small faded image is restored using these parameters and a new
list of colours produced.

4. The maximum and minimum lightness and the average saturation are
computed from the pixels of the restored small image..

5. The constants for the linear scalings of L* are computed.

6. If the saturation is low then a scale factor to be applied to all values
of U* and V* is computed.

7. The original full size image is restored using the restoration parame-
ters.

8. The full sized restored image is ‘enhanced’ by scaling L*, U* and V*.
This last step is slow but can be justified by the good result. The following

figure shows the final image and the spread of colours in the U*, V* plane.
Note that it is now central and enlarged compared with the original

] O

Figure 4: left: The restored image, right: The better spread of colours

5 Technical details

The code is written in python 2.7 but a python 3 version should be easy
to produce. Portions of the PIL library are used but only for standard
operations. Because the final restoration of the image is computationally
intensive the numpy module is used. This calculates with whole arrays of
data without the overheads of interpreting python code. The program prints
information about the restoration process and detects cases where it appears
to have failed.

10

6 Testing

I explained in the document Restore2.pdf that I do not think a comparison
with previous algorithms is very helpful; it is always possible to find an
image that is restored better by algorithm A than by algorithm B. Also the
criterion for approval is whether we like the final result; we do not know if
it is like the original before fading. Nevertheless I have compared the new
algorithm with the output of pyrestore3.py for the same set of test images
and a selection is shown below.

As might be expected the results are different but in general ‘good’ and
since we do not have the original this is all we can ask. Almost none of
the results with the new algorithm are worse than with the older ones. My
impression is that in general the colours are better with the new method.
In particular the chocolate browns, greenish skies and violet shadows which
were charcteristic of the earler algorithms seem absent. Since these colours
are mixtures of red and green, green and blue, and blue and red I had
attributed their prevelence to be in some way a consequence of processing
using the red, green and blue channels. The new algorithm using LUV space
ought to be better and this seems to be true.

In some cases the results from pyrestore3.py are more ‘colourful’ than
from the new code. I attribute this to the better definition of saturation
that is now used; the more ‘colourful’ images may be more attractive but I
suspect they are less authentic.

Figure 5 shows an example used previously to illustrate a poor result using
pyrestrore3.py. See the document Restore2.pdf for a discussion of why
this image presents problems. The result now better but still not as good
as can be achieved by hand processing. The distributions of colours before
and after in U-V space are shown below the images.

The examples below these compare the original and the restorations using
pyrestore3.py and the new pyrestore4.py. They have been chosen to
emphasise ways in which the new algorithm works better than the old.

11

Figure 5: left: Original, right: Restored, Below the corresponding colour
distrubutions

Figure 6: left: Original, centre: Previous restoration, right: New restoration

The first example, Figure 6, is a very badly faded slide taken on cheap colour
film and both attempts at restoration are improvements. The result using
pyrestore3.py has warmer colours but I suspect the new version is more
authentic, (it was poring with rain at the time!). Note the purple tinge to
the sky in the earlier version.

12

Figure 7: left: Original, centre: Previous restoration, right: New restoration

Figure 8: left: Original, centre: Previous restoration, right: New restoration

Figures 7 and 8 are examples of the tendency of the earlier method to
produce chocolate brown colours and greenish skies and although the new
version in Figure 7 is not very good the problem is much reduced. Figure 9
is an even more dramatic example.

Figure 9: left: Original, centre: Previous restoration, right: New restoration

13

Figure 10: left: Original, centre: Previous restoration, right: New restora-
tion

Figure 10 shows a case where the result using the original method is more
‘colourful’ and many people would prefer it. However I suspect this is the
result of using the simple definition of saturation and not the better one using
LUV colour space. Most software packages for image processing will include
an option for increasing saturation but these will probably use the simple
definition described in section 4 since this is much easier to implement. As
we are exposed to more images that have been digitally processed, on TV for
example, we will begin to expect bright colours even if they are less natural.

7 Examples

In this section, Figures 11 to 14, I show a few more examples; I have, of
course, chosen cases where the the method works fairly well.

Figure 11: left: Original, right: Restored

14

Figure 13: left: Original, right: Restored

Figure 14: left: Original, right: Restored

8 Conclusions

Previous documents have described computer code for restoring colour pho-
tographs that have deteriorated with age. Restorel.py was a plug-in for
the gimp image processing package. An improved algorithm was used in
the plug-ins Restore2.py and Restore3.py. Since the operations used in
the gimp package were also available in the PIL library stand-alone python
programs pyrestor2.py and pyrestore3.py were inroduced. The first of
these no longer works in many cases and is abandoned.

The latest code pyrestore4.py used a new approach which treats colour

15

information in a way that is better match with human vision rather than the
convenience of computer processing. The results appear to be significantly
better but one should always remember that the original is not available for
comparison. In addition to the tests included here there is the argument
that the calculations in colour space have a much more solid theoretical
basis.

The program processes all the .jpg or .JPG files in a given directory and
puts the restored versions in a subdirectory called restored (which must
exist). The process is now enirely automatic and there are no options for
the user.

16

